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Estimating the kinematic vorticity numbers from rock fabrics presents many problems. In this paper we
use numerical modeling to investigate the reliability of those widely-used vorticity analysis methods
using rigid clasts. We use very simple flows (steady state, homogeneous, and having monoclinic
symmetry) to represent plane-straining zones and transpressional zones and assume that the rotation of
rigid clasts perfectly obeys the theory of Jeffery (1922, Proceedings of the Royal Society of London A102,
161—179). These are assumptions made in current vorticity analysis using rigid clasts. Even with these
simple assumptions, our modeling shows that the current methods have intrinsic uncertainties so large
that it is pointless to use the estimated vorticity numbers to constrain shear zone boundary conditions
and kinematics. It is perfectly consistent with numerical modeling results if the currently reported
vorticity numbers estimated from rigid clasts (in the range of 0.50—0.85) are all interpreted as being from
natural shear zones with close-to-simple-shearing flows. The large uncertainties arise because the
motion of rigid clasts is intrinsically a three dimensional problem.

Vorticity analysis

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Ductile shear zones are common features in Earth’s crust and
mantle (e.g., Ramsay and Graham, 1970; Tchalenko, 1970; Mitra,
1978; Ramsay, 1980; Pili et al., 1997; Savage, 1999 and references
therein; Regenauer-Lieb and Yuen, 2003; Vauchez and Tommasi,
2003; Williams and Jiang, 2005). Understanding the kinematics
of such zones is important for elucidating the tectonic evolution of
an area on a regional or larger scale. Many people have attempted
to estimate the (kinematic) vorticity number of ductile shear zones
from fabrics, although as pointed out by Tikoff and Fossen (1995),
the vorticity number alone cannot completely characterize the
kinematics of a shear zone unless it is an isochoric plane-straining!
zone. To completely characterize the kinematics of a general
monoclinic shear zone requires three independent parameters
(Passchier, 1997, 1998). To completely characterize the kinematics
of a triclinic shear zone requires four independent parameters
(Jiang and Williams, 1998).

* Corresponding author. Tel.: +1 519 636 6068; fax: +1 519 661 3198.
E-mail addresses: cli246@uwo.ca (C. Li), djiang3@uwo.ca (D. Jiang).

! In this paper, to differentiate flow fields from finite deformation states, we use
terms like simple shearing, pure shearing, and plane straining, following Means
(1990), as opposed to simple shear, pure shear, and plane strain. Some authors
have used terms like progressive simple shear (or simple shear progressive defor-
mation), progressive pure shear (or pure shear progressive deformation) for the
same purpose (e.g., Hobbs et al., 1976; Passchier, 1990; Jiang, 2010).

0191-8141/$ — see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsg.2010.09.001

Many fabric types have been used for vorticity analysis,
including deformed dykes or veins (e.g., Passchier and Urai, 1988;
Wallis, 1992; Short and Johnson, 2006; Kuiper and Jiang, 2010),
quartz and calcite lattice preferred orientations (LPO) (e.g., Wenk
et al,, 1987; Vissers, 1989; Ratschbacher et al., 1991; Wallis, 1992,
1995), tension gashes (e.g., Fossen and Tikoff, 1993; Grasemann
et al., 1999), and rigid clasts (e.g., Passchier, 1987; Wallis et al.,
1993; Simpson and De Paor, 1997). Among these, rigid clasts in
mylonites are most commonly used (e.g., Klepeis et al., 1999;
Xypolias and Koukouvelas, 2001; Bailey and Eyster, 2003; Law
et al., 2004; Jessup et al., 2006; Marques et al., 2007; Wang et al.,
2007; Kurz and Northrup, 2008; Sarkarinejad and Azizi, 2008;
Sarkarinejad et al., 2009; Zhang et al., 2009; Langille et al., 2010;
Thigpen et al., 2010). With the assumption (mostly implicit) that
the deformation is plane straining, the estimated vorticity numbers
have been extrapolated to infer large scale tectonic boundary
conditions of some major shear zones in mountain belts (e.g.,
Wallis et al., 1993; Wallis, 1995; Grasemann et al., 1999; Xypolias
and Koukouvelas, 2001; Law et al., 2004; Frassi et al., 2009). For
instance, Grasemann et al. (1999) used their estimated vorticity
numbers (0.57—0.71) from tension gashes and quartz LPO in the
Main Central Thrust Zone to suggest an extrusion model after
Grujic et al. (1996) for the exhumation of the crustal wedge
bounded by the South Tibetan detachment zone and the Main
Central Thrust Zone in NW Himalaya. Law et al. (2004) further
supported this conclusion with their own estimated vorticity
numbers (0.67—0.98) mainly from rigid clasts at the top of the
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crustal wedge. Xypolias and Koukouvelas (2001) carried out
vorticity analysis using rigid clasts and quartz LPO throughout the
Chelmos Shear Zone in Greece and used the results to support an
extrusion model for the zone (Xypolias and Doutsos, 2000). In all
these extrapolations, plane-straining deformation was assumed
implicitly.

Many authors have pointed out that the vorticity analysis is
based on some strict assumptions that are hard to justify for natural
deformation. First, most fabrics result from accumulated deforma-
tion. In order for vorticity analysis to make sense, one must assume
that the vorticity number has been constant during the develop-
ment of the fabric. This essentially requires that the flow be steady
state, which is hard to justify because deformation in natural shear
zones is generally heterogeneous which is generally non-steady
(Jiang, 1994; Jiang and White, 1995; Jiang and Williams, 1999).
Regional to crustal scale shear zones commonly have a trans-
position foliation parallel to the shear zone boundaries (e.g.,
Williams and Jiang, 2005). It can be demonstrated that the trans-
position process is associated with highly non-steady flow in
rheologically different lithological domains (e.g., Jiang, 1999, 2010).
There is some belief that the vorticity number obtained from rocks
might represent some “mean” or “average” vorticity number in the
event that the flow has been non-steady. However, there is no
theoretical or experimental basis for this belief. Second, the most
widely-used vorticity analysis methods are based on rigid clasts and
assume that they behave according to Jeffery’s theory (Jeffery, 1922)
for rigid inclusion motion in Newtonian viscous flows. However,
rocks are likely non-Newtonian (Carter, 1975, 1976; Tullis, 1979;
Kirby, 1983; Gleason and Tullis, 1995). Furthermore, many recent
works have shown that clasts in rocks may not behave according to
Jeffery’s theory because of interface slip between clasts and the
surrounding material (Ildefonse and Mancktelow, 1993; Bjernerud
and Zhang, 1995; Marques and Cobbold, 1995; Pennacchioni et al.,
2000; Mancktelow et al., 2002; Ceriani et al., 2003; Schmid and
Podladchikov, 2004, 2005; Mandal et al., 2005; Mulchrone, 2007;
Johnson et al., 2009), large clast size compared to the width of the
shear zone (Marques and Coelho, 2001), and interaction among
clasts (Ildefonse et al., 1992a, b; Marques and Bose, 2004; Mandal
et al., 2005). Third, extrapolating the kinematics of a small scale
to that of a regional scale essentially assumes that deformation

kinematics is uniform across scales many orders of magnitude
different, ignoring the heterogeneous nature of rock deformation
and deformation partitioning (e.g., Lister and Williams, 1983).

In addition to the strict assumptions mentioned above, to apply
the vorticity analysis to natural shear zone also requires that all
clasts be spheroidal or oriented in certain directions initially.
However, these clasts are rare in nature. In this paper, using the
algorithm of Jiang (2007) for modeling the rotation of rigid clasts in
Newtonian viscous flows, we investigate fabrics defined by a pop-
ulation of arbitrarily shaped and initially randomly oriented clasts
to critically examine those vorticity analysis methods using rigid
clasts. We consider isochoric plane-straining flows and Sanderson-
and-Marchini type transpressional (S&M) flows (Sanderson and
Marchini, 1984) in this paper, because these two types of flow are
mostly studied in the literature and the results from the study of
them are sufficient to make our points. We show that even if the
assumptions for vorticity analysis, as discussed above, are all
accepted, and the bulk flow is simply monoclinic, the uncertainties
associated with these methods are intrinsically too large for the
results to be useful. The large uncertainties are due to the three
dimensional (3D) nature of clast motion and cannot be eliminated.
Reported vorticity numbers from these methods are normally in
the range of 0.5—0.85 which have been used to argue that the
hosting zones deviate significantly from simple shearing zones
(e.g., Wallis et al., 1993; Xypolias and Koukouvelas, 2001; Law et al.,
2004; Jessup et al., 2006; Sarkarinejad and Azizi, 2008; Frassi et al.,
2009; Langille et al., 2010). Our numerical modeling shows that the
reported range could all be from zones with close-to-simple-
shearing flows.

2. Vorticity numbers

Ductile shear zones occur as highly deformed rocks bounded by
far-less deformed or relatively undeformed wall rocks. The flow in
such tabular zones is routinely and most conveniently described in
a reference frame that is fixed to the zone-bounding country rocks.
In this paper, we refer to a vertical, north—south trending shear
zone and use a Cartesian coordinate system such that the X- and
Y-axis are horizontal and pointing respectively to the north and
east. The Z-axis is vertical and points down (Fig. 1a).
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Fig. 1. (a) Reference frame, coordinate system and flow in a shear zone. The coordinate X-, Y-, and Z-axis point respectively to north, east, and down. The simple shearing
component () is parallel to the X-axis. The vorticity vector w is parallel to Z-axis. The strain rates along X-, Y-, and Z-axis are é, ¢y, and ¢, respectively. The vorticity-normal section
(VNS) is on the XY-plane. SZB: shear zone boundary. For isochoric plane-straining flows, & = —éy and é;, = 0. For Sanderson-and-Marchini type transpressional (S&M) flows, ¢, =
—&y and & = 0. (b). Sectional flow on the VNS of a thinning zone (é&y < 0). Two flow apophyses are denoted by A;, parallel to the shear direction, and A; inclined synthetically to the
shear zone boundary at an acute angle «. Clasts viewed on the VNS are 2D ellipses whose major axis is Myy and minor axis is myy. The aspect ratio of the ellipse is R (= Myy/myy). In
the special case where two symmetry axes of a 3D clasts are Myy and myy, these two symmetry axes rotate on the VNS and R is constant. If the clast has R > Rcit, two orientations
(stable orientation Bj:¢; and unstable orientation B;:¢,) exist for the clast. When the clast’s Myy axis is parallel to either, the clast has zero angular velocity. The clast’s My axis

rotates away from B, toward B;.
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In our reference frame and coordinate system, the flows used in
our modeling can be described by velocity gradient tensors of the
forms:

—& -7 O
L = 0 & 0] (forisochoric plane-straining flows)
0O 0 O
(1a)
0O -y O
L=10 & 0 | (for S&M flows) (1b)
0 0 —¢

where y(y > 0) is the shear strain rate for the simple shearing
component and &y is the strain rate parallel to the Y-axis (Fig. 1a).
The two types of flow can be in thinning zones (¢y, < 0) or thick-
ening zones (&, > 0). We use thinning zones as examples to present
our study in this section and the sections that follow, because they
are common in nature. It should be noted that our conclusions
drawn from modeling also hold for thickening zones. The eigen-
vectors of L, named flow apophyses (Ramberg, 1975a, b), are the
orientations along which material lines have zero angular veloci-
ties. For the two types of flow (Egs. (1a) and (1b)), there are three
eigenvectors, two of which are on the XY-plane, and the third one is
along the Z-axis (Fig. 1b).
The vorticity vector for the above two types of flow is

0
w = (0) (2)
Y

Because only steady flows (L is constant with time) are considered
in this paper, the vorticity is entirely internal vorticity (Means et al.,
1980; Lister and Williams, 1983; Tikoff and Fossen, 1995; Wallis,
1995; Jiang, 1999, 2010).

The plane normal to the vorticity vector w is called the vorticity-
normal section (VNS, Jiang and Williams, 1998; Lin et al., 1998). It is
a common practice to regard the section that shows the best fabric
asymmetry in natural shear zones as the flow VNS. This practice can
be justified if the flow is monoclinic (Passchier, 1998). Thus if a tec-
tonite is from a more or less plane-straining shear zone, the section
parallel to lineation and perpendicular to foliation is close to the
flow VNS. For S&M flows, the VNS is either parallel to the lineation
and perpendicular to the foliation or normal to the lineation.

There are two different kinematic vorticity numbers used in the
literature. One was defined by Truesdell (1953, 1954), called the
kinematic vorticity number or simply the vorticity number
(Truesdell, 1991). For flows defined in Egs. (1a) and (1b), the
vorticity number is (see Jiang and Williams, 1998; Lin et al., 1998):

Y
Wy = ———= (3)
VA8 + 7

Another number, often called the sectional (kinematic) vorticity
number, was defined by Passchier (1987) and Robin and Cruden
(1994). For our monoclinic flows, the sectional vorticity number
W; on the VNS is (see Robin and Cruden, 1994; Jiang and Williams,
1998; Lin et al., 1998):

WS: ,Y

———(for isochoric plane-straining flows) (4a)
V48 + 7
Wy = N — (for S&M flows) (4b)
8+

The sectional vorticity number is related to the acute angle («,
Fig. 1b) of the two flow apophyses on the VNS by (Bobyarchick,
1986; Passchier, 1986):
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Fig. 2. Relationship between Wy and W} in S&M flows.

W, = cosa (5)

In earlier studies of shear zones, only isochoric plane-straining
deformations were considered (e.g., Ramsay and Graham, 1970;
Ramberg, 1975b; Ramsay, 1980; Passchier, 1987; Simpson and De
Paor, 1993) and it was sufficient to use the vorticity number of
Truesdell (Eq. (3)) to completely characterize the kinematics of the
flow. However, when 3D flows are investigated, a single Truesdell’s
vorticity number corresponds to an infinite number of possible
flows (Tikoff and Fossen, 1995). It becomes necessary to distinguish
flow kinematics viewed on the VNS from that of the 3D flow, and
the sectional vorticity number W; on the VNS was proposed to
serve this purpose.

Wi differs from Wy except for isochoric plane-straining flows
(Passchier, 1987, 1997; Robin and Cruden, 1994; Wallis, 1995; Egs.
(3) and (4a)). Fig. 2 shows their difference in S&M flows. It has been
shown theoretically (e.g., Passchier, 1987; Appendix in Jiang, 2007)
and is in fact justifiable by numerical modeling (see vorticity
analysis methods and Fig. 4 in next section) that it is Wj, rather than
Wi that is relevant to rock fabrics observed on the VNS. Therefore it
should be pointed out that what is obtained from vorticity analysis
is W; instead of Wi.

3. Vorticity analysis using rigid clasts

The motion of a rigid ellipsoidal clast in a viscous flow is a 3D
problem described by a set of equations (Jeffery, 1922). The
vorticity analysis methods using rigid clasts, however, are based
on the application of Jeffery’s theory to the following two very
special cases in monoclinic flows: either all clasts must be sphe-
roidal or, if they are triaxially shaped, must have one symmetry
axis parallel to the vorticity vector of the flow. In the first case,
analytical solutions to the Jeffery’s equations exist (Jezek et al.,
1996; Supplementary data in Jiang, 2007), and they show that
given sufficiently large finite strain of the shear zone, the distinct
axes of rigid clasts either rotate permanently following the so-
called Jeffery’s orbits or reach stable orientations (Jeffery, 1922;
Passchier, 1987; Supplementary data in Jiang, 2007). Therefore, if
stabilized clasts can be identified from rocks, their shapes (often
measured by clast aspect ratio R) and orientations can be used to
calculate the vorticity number. In the second case, the clast rota-
tion is reduced to the two-dimensional (2D) problem of Ghosh and
Ramberg (1976) which can be examined on the VNS (Passchier,
1987; Simpson and De Paor, 1993). Current vorticity analysis
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9p Unstable branch

Fig. 3. 2D clast rotation behaviors in a R—¢ plot in a polar coordinate. For any given
W, a hyperbola (clast apophyses) can be constructed using Eqs. (7) and (8). The
hyperbola approaches the flow apophyses (A; and A,) asymptotically. Clasts plotted in
the white area (R < R.t) rotate permanently with vorticity; clasts plotted in the light
grey area rotate forward until they reach their stable positions (on the solid branch of
the hyperbola) while clasts plotted in the dark grey area rotate against vorticity (away
from the dashed branch of the hyperbola) until they reach their stable positions (on
the solid branch of the hyperbola). FWR: forward rotation. BWR: backward rotation.
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methods using rigid clasts are mostly based on the 2D theory of
Ghosh and Ramberg (1976) which we review briefly below in the
context of vorticity analysis.

A clast viewed on a VNS is an ellipse whose major and minor
axes are denoted by Myy and myy (Mxy > myy; Fig. 1b). The shape of
the ellipse is measured by the aspect ratio R(= Myy/myy), and the
orientation of the ellipse is measured by the angle ¢ between the
Myy axis and the shear plane (Fig. 1b). In the event that one of the
three symmetry axes (ay, az, and as, a; > ax > as) of a clast is parallel
to the vorticity vector, the two remaining ones are on the VNS and
are the Myy and the myy. If the flow is simple shearing, the two
symmetry axes Myy and myy shall rotate permanently with vorticity,
and if the flow is pure shearing, the two symmetry axes will finally
stabilize with My and myy parallel to the two principal strain rate
axes of the flow (Gay, 1968). In a general 2D monoclinic flow,
a critical aspect ratio Rt exists (Ghosh and Ramberg, 1976;
Passchier, 1987):

Rt = \/(‘l + Wf()/(l - W15<) (6)

whereby a clast with R < Rt rotates permanently with vorticity
(forward rotation), and a clast with R > R¢j: will reach a stable
orientation (Ghosh and Ramberg, 1976; Passchier, 1987). There are
two orientations along which a clast with R > Rt has zero angular
velocity:

Fig. 4. Relationship between clast shape fabrics, W}, and W, investigated by numerical experiments. All clasts have their a; axes parallel to the vorticity vector throughout
deformation and their a, and a3 axes are initially randomly oriented on the VNS. The clast shapes are shown in Fig. 5d. (a) and (b): R—¢ plots of 300 clasts in an S&M flow with W of
0.9 (Wy = 0.72) at a high finite strain (ratio of the maximum over minimum principal stretch s;/s3 = 7.4 x 10'°). Such an enormously high finite strain is adopted here to ensure that
clasts with R(=ay/as) > Rgit reach their stable orientations. Shaded area in (a) indicates the possible range of Rqyoff following common vorticity analysis practice. The black dash line
corresponds to a theoretical R for a vorticity number of 0.9, and the grey one corresponds to a theoretical R for a vorticity number of 0.72. Here the shaded area is close to the
black dash line, suggesting that estimated vorticity number approximates actual Wj; with the ARC method. The curves in (a) and hyperbolas in (b) are constructed using Eqgs. (7) and
(8), and the corresponding vorticity numbers are indicated beside. Clasts with large R’s are plotted along the curve in (a) and the hyperbola in (b) both for the vorticity number of
0.9, suggesting that it is W;, estimated in the SC method. (c) Results from a series of numerical experiments for S&M flows. Again, extremely high strains (impossible in any natural
shear zone) are adopted in our experiments here. Solid circles represent Reutofr for corresponding W;. The Wy corresponding with W}, are represented by open circles. The curve is
constructed using Eq. (6) with the assumption that Reutoff = Rerit- All solid circles instead of open circles lie on the curve, suggesting that it is W}, instead of W) that is related to clast

shape fabrics observed on the VNS.
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Fig. 5. (a—c) Lower-hemisphere equal-area projections of the initial orientations of the symmetry axes of 300 clasts generated for numerical modeling. (d) Flinn plot for the shapes

of the clasts. See text for more details.
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The ¢ orientation is shown in Fig. 1b as B; and the ¢, orientation
is shown as B,. The ¢ orientation is the stable orientation toward
which the Myy axis rotates. The ¢, orientation is an unstable
orientation from which the Myy axis rotates away (Ghosh and
Ramberg, 1976; Passchier, 198., 1995). The rotation behaviors are
best represented in a polar coordinate system of R against ¢
(Simpson and De Paor, 1993; Fig. 3). For a given flow (W} known),
¢, and ¢, are functions of R and Eqs. (7) and (8) define a hyper-
bola in a polar coordinate plot of R against ¢. Clasts from a shear
zone plotted on the corresponding hyperbola have zero angular
velocities. Similar to flow apophyses for material lines, these
hyperbolas can be called “clast apophyses”. The two asymptotic
lines of the “clast apophyses” correspond to the two apophyses for
material lines. As shown in Fig. 3, clasts plotted within the
R = Rt circle rotate permanently, while those plotted outside of

the circle (R > Rit) can reach stable orientations. Clasts plotted
within the concave side of the hyperbola rotate backward (against
vorticity), while those plotted outside rotate forward (with
vorticity).

In vorticity analysis using rigid clasts, R—¢ data are first plotted
in a Cartesian coordinate system or a polar coordinate system, and
three methods have been used (Passchier, 1987; Simpson and De
Paor, 1993; Wallis et al., 1993). In the first method, here called the
‘aspect ratio cutoff’ (ARC) method, a dividing line (for a Cartesian
R—¢ plots) or circle (for a polar R—¢ plots) is determined from such
a plot that separates the domain with a wide range of ¢ values
(interpreted as representing permanently-rotating clasts) from the
domain showing a narrow range of ¢ values (taken to represent
stable clasts). We call the R value corresponding to this dividing line
(or circle) Reytoff. Reutofr has been regarded as Rt in the calculation
of vorticity using Eq. (6). We shall demonstrate later that this is not
appropriate. The second method, here called the ‘stabilized clast’
(SC) method, is to identify clasts that are believed to have reached
their stable orientations and then Eq. (7) is used to calculate the
vorticity number. The third method here called the ‘backward
rotating clast’ (BRC) method is to identify backward rotating clasts
from forward rotating ones and plot both groups with different
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Fig. 6. R—¢ plots for a plane-straining flow with W}, of 0.9, at different bulk finite strains. The curves in the Cartesian plots are constructed using Eq. (7), and the corresponding W}
values are indicated beside. The hyperbolas in the polar plots are constructed using Eqs. (7) and (8) for the Wj; of 0.9. All clasts are forward rotating. Shaded areas indicate the
possible range of Ryofr following common vorticity analysis practice.
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Fig. 7. R—¢ plots for a plane-straining flow with W; of 0.7 at different bulk finite strains. The curves in Cartesian plots are constructed using Eq. (7). The two hyperbolas in the polar
plots are constructed using Eqgs. (7) and (8). One is for a W;; of 0.7 and the other is for a W;; of 0.8. Forward rotating clasts are plotted as open circles, while backward rotating clasts
are plotted as black solid circles. Shaded areas indicate the possible range of Rqytofr following common vorticity analysis practice.
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Fig. 8. R—¢ Cartesian plots for a simple shearing flow (W = 1) at different bulk finite strains. All clasts are forward rotating. The Rt for this flow is infinite. However, the Reytoft is
finite at different strains: 2.0—3.7, 2.36—3.7, 3.3—4.36, and 4—5, which would yield estimated vorticity numbers 0.6—0.86, 0.7—0.86, 0.83—0.9, and 0.88—0.92 respectively using the
ARC method. With the SC method, the estimated vorticity numbers are 0.5-0.8, 0.7—0.9, 0.8—0.9, and >0.9. Note that the clast shape preferred orientation is not stable in the simple
shearing (intensity decreases from (a) to (d)), and this is also observed in Jezek et al. (1994) and Ildefonse et al. (1997).

symbols in a polar coordinate R — ¢ diagram. The curve separating
the two groups is then fitted to theoretical hyperbola in order to
estimate the vorticity number.

With the R — ¢ polar coordinate plot being used, the three
methods above, especially the BRC method, have been referred to
as porphyroclast hyperbolic distribution (PHD) method (Simpson
and De Paor, 1993). The ARC or SC methods used with a Cartesian
coordinate plot have been referred to as the rigid grain net (RGN)
method (Jessup et al., 2007), or the porphyroclast aspect ratio
method (Passchier, 1987; Wallis et al., 1993).

For the ARC method, the uncertainty in the estimated vorticity
number depends on how well Reyoff can represent Ry (Fig. 4a). For
the SC method, the uncertainty lies on whether stabilized clasts are
correctly identified. For the BRC method, the uncertainty depends
on how well backward rotating clasts are correctly distinguished
from forward rotating clasts, and how accurate the boundary line
can be defined and fitted into a unique hyperbola.

All methods are based on the 2D theory of Ghosh and Ramberg
(1976) which hardly applies directly to any rock deformation
involving rigid clasts, because the motion of natural rigid clasts is
intrinsically a 3D problem. Uncertainties associated with 3D nature
of rigid clast motion are previously unknown. We now analyze the
level of uncertainty by numerical modeling.

4. Numerical modeling

Although rigid clast fabrics used for vorticity analysis have to be
obtained on 2D sections like the VNS, rigid clast motion in 3D flows
must be dealt with three dimensionally. Since no analytical solu-
tions to Jeffery’s equations for general cases exist (Freeman, 1985;
Jezek et al., 1994), we now apply numerical modeling to address

the 3D motion of rigid clasts in general monoclinic flows described
by the velocity gradient tensor of Eqs. (1a) and (1b). We investigate
the shape fabric of the rigid clasts that will develop and evolve on
the VNS as deformation advances and examine the consequences of
applying this shape fabric for vorticity analysis using each of the
three methods reviewed above. Our numerical modeling is based
on Jiang (2007). The numerical modeling method can investigate
clast shape fabric evolution in 3D or as observed on any specified
section such as the VNS so that direct comparison between
modeling results and geological observations can be made readily.

4.1. Generation of the initial population of rigid clasts

We generate a population of 300 clasts with uniform randomly
distributed initial orientations (Fig. 5a—c) like previous studies
(e.g., Freeman, 1985; Jezek et al., 1996) following the procedure of
Jiang (2007). For their shapes (symmetry axes: a; > ap > asz), we
first generate a random number between 1 and 6 for the ratio (r) of
ai/as for each clast and then generate a random number between 1
and r for the ratio az/as of that clast. The shapes for this population
of clasts generated are plotted in a Flinn diagram in Fig. 5d.

4.2. Numerical modeling of a population of rigid clasts and its
implication

We investigated clast fabrics developed in our two types of
flows. For plane-straining flows we modeled 3 cases, with W§
(=WEKk for plane-straining situations) being respectively 0.9, 0.7 and
1. The R—¢ patterns on the VNS (R—¢ plots) for each case at
different finite strain states are presented in Figs. 6—8 respectively.
For S&M flows, we modeled two cases with Wli of 0.9 and 0.7. The
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Fig. 9. R — ¢ plots for an S&M flow with W} of 0.9 at different bulk finite strains. Symbols are the same as in Fig. 7.
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Fig. 10. R—¢ plots for an S&M flow with W} of 0.7 at different bulk finite strains. Symbols are the same as in Fig. 7.
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resulting R—¢ patterns on the VNS at different finite strain states for
each case are presented in Figs. 9 and 10 respectively. We now test
each of the three vorticity analysis methods.

4.2.1. The aspect ratio cutoff (ARC) method

Fig. 6 shows the R—¢ plots for a plane-straining flow with W of
0.9 which gives a theoretical Rt of 4.36. The Reyoff that one would
obtain following the common practice (e.g., Wallis et al., 1993; Law
et al,, 2004) from these R—¢ plots would be like 1.6—2.7, 1.7-2.6,
and 1.6—2.5 at bulk finite strains (ratio of the maximum principal
stretch over the minimum principal stretch s1/s3) 25, 50, and 100
respectively. They would yield estimated vorticity numbers
0.44—0.76,0.49—0.74, and 0.44—0.72 respectively. Fig. 9 presents the
R—¢ plots for an S&M flow with W} of 0.9 corresponding to a theo-
retical Rt of 4.36. The Rcyorf from these R—¢ plots are 1.5—3.2,
1.8—4.2, and 1.6—3.0 at bulk finite strains (s1/s3) 25, 50, and 100
respectively, which would yield estimated vorticity numbers of
0.38-0.82,0.53—-0.89, and 0.44—0.80 as opposed to the actual W} =
0.9 of the flow. Fig. 8 presents R—¢ plots for a simple shearing flow,
and the estimated vorticity numbers are in the range of 0.6—0.92.
Fig. 7 presents R—¢ plots for a plane-straining flow and Fig. 10 for an
S&M flow both with a given W of 0.7. The estimated vorticity
numbers from clast shapes on the VNS are in the range of 0.32—0.87.

4.2.2. The stabilized clast (SC) method

This method highly depends on how well stabilized clasts are
correctly identified from natural mylonites. In the Cartesian R—¢
plots, it is a common practice to use clasts with large R’s to best fit
a hyperbola defined by Eq. (7) to estimate the W}. Fig. 6b—d shows
that in a plane-straining flow (W; = 0.9) the method would yield
estimated vorticity numbers of 0.5-0.9, 0.5—-0.8, and 0.7-0.9
respectively at different finite strains. Fig. 9b—d shows that in an
S&M flow (W} = 0.9) the estimated vorticity numbers are 0.5-0.9,
0.5—0.8, and 0.5—0.9 respectively at different finite strains. In these
examples the W} is underestimated, and the uncertainty can be as
large as 0.4 as shown in Figs. 6b and 9b. Fig. 8 presents R—¢ plots for
a simple shearing flow, and the estimated vorticity numbers are in
the range of 0.5—1.0. High uncertainty in estimated vorticity
number is also shown in numerical modeling of the plane-straining
flow (W3 = 0.7, Fig. 7b—d) and the S&M flow (W; = 0.7,
Fig. 10b—d), from both of which the estimated vorticity numbers
are in the range of 0.5—0.9.

4.2.3. The backward rotating clast (BRC) method

This method requires that backward rotating clasts can be
identified. Clast rotation in 3D space is much more complicated
than the 2D theory of Ghosh and Ramberg. The angular velocity
vector w, describing the instantaneous rotation for an individual
clast, can have any angle between 0° and 180° with respect to the
vorticity vector w. A clast as a whole is momentarily rotating
forward if the angle between w and w is acute and backward if it
is obtuse. Figs. 7a and 10a show that, unlike 2D situations where
forward and backward rotating clasts are separated by the
hyperbolic clast apophyses, in 3D cases on the VNS forward and
backward rotating clasts can be mixed together and that no
distinct boundary exists between the two groups. If we ignore the
forward rotating clasts and draw a hyperbola to closely enclose all
the backward rotating clasts, this hyperbola would correspond to
a vorticity number less than 0.7 (actual W of the flows). Fig. 7¢
and d indicate that the estimated vorticity numbers is 0.8, which
is higher than the actual W (=0.7). Figs. 6a—d and 9a show no
backward rotating clasts, which would imply an estimated
vorticity number of 1, while the actual W§ is 0.9.

Our numerical modeling above suggests that large uncertainties
exist in estimating vorticity numbers using rigid clasts. Considering
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Fig. 11. R—¢ Cartesian coordinate plots of natural clast data. (a) Clasts of feldspar from
the Okanagan Valley shear zone, BC, Canada. (b) Data taken from the first plot of fig. 10
in Law et al. (2004). Black circles represent feldspars, and white squares represent
amphiboles.

this level of uncertainty, reported vorticity numbers in the litera-
ture in the range of 0.5—0.85 using the ARC and SC methods may
come from flow fields that are all close to simple shearing.

R—¢ patterns from many natural shear zones have been pre-
sented in the literature (e.g., fig. 13 in Wallis et al., 1993; fig. 6 in
Xypolias and Koukouvelas, 2001; fig. 10 in Law et al., 2004; fig. 5
and figs. A1—A5 in Jessup et al., 2006; fig. 10 in Sullivan, 2008;
fig. 9 in Frassi et al., 2009; fig. 7 in Johnson et al., 2009). They all
look similar to our modeling-produced patterns. Here, we take
two natural examples to illustrate that estimated vorticity
numbers in the range of 0.5—0.85 may all have come from flow
fields that are close to simple shearing. One is from mylonites in
the Okanagan Valley shear zone in British Columbia, Canada.
Kinematic analysis and field geology of the shear zone suggest
that the deformation path is close to simple shearing (Liu, 2009).
Fig. 11a is the R—¢ plot of the clasts collected from the Okanagan
Valley shear zone, and it suggests a Rcytoff Of 1.8—3, which would
yield an estimated vorticity number of 0.53—0.8 using the ARC
method. Using the SC method, the estimated vorticity number is
in the range of 0.7—0.9. The other example is shown in Fig. 11b,
taken from Law et al. (2004, the first plot of their fig. 10). The
Reutofr is 2.5—3.0, which would yield an estimated vorticity
number of 0.72—0.8 using the ARC method. With the SC method,
the estimated vorticity number would be between 0.7 and 0.8.
The R—¢ plots from the above two examples as well as those
from many other natural shear zones are similar to our modeling
results (Fig. 6b—d and Fig. 9b—d). Therefore, like our numerical
modeling results, the vorticity numbers estimated from these
natural shear zones could also have been produced by close-to-
simple-shearing flows.
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Fig. 12. R—¢ Cartesian coordinate plot of rotation paths for three types of clasts. At
sufficiently high strains type A clasts stabilize, and they are plotted on the curve in the
R—¢ plot. At sufficiently high strains, a type B clast, having one symmetry axis parallel
to the vorticity vector, only changes its ¢. A type C clast always changes its R and ¢ with
deformation, and shows complicated trajectory of R—¢ path. The R of this clast is
always less than its a;/as(=3.5).

5. Why are the uncertainties so large?

We have shown above that even in the ideal modeling situations
(given monoclinic, homogeneous and steady flow, all clasts obeying
Jeffery’s theory), the estimated vorticity numbers generally have
uncertainties so large that all currently reported numbers (0.5—0.85)
could have been explained by simple shearing. It is unnecessary,
from the estimated “vorticity numbers” alone, to invoke shear zone
boundary conditions significantly different from simple shearing.
Why are the uncertainties so large? We will show in this section that
these uncertainties are due to the 3D nature of rigid clast rotation.
They are intrinsic and cannot be removed by any “better”
measurements or presentations of the observable dataset.

In order to understand the nature and origin of the uncer-
tainties, it is necessary to investigate rotation behavior of individual
triaxially-shaped clasts in monoclinic flows. The 3D rotation is
complex. To facilitate discussion, we divide clasts in monoclinic
flows into three types according to their rotation behaviors (Fig. 12).

5.1. Clast rotation behaviors

A clast is type A if it can reach a stable orientation where all of
its three symmetry axes are fixed. When it reaches the stable

a/a,

type A

1 2 3 Rad 5 az,na’a

orientation, both its shape (R) and orientation (¢) are fixed on the
VNS. A clast is type B if it rotates permanently but will eventually
have one symmetry axis parallel to the vorticity vector. Once one
symmetry axis of a type B clast reaches parallelism with the
vorticity vector, its R on the VNS is fixed, but its ¢ still varies with
deformation. A clast is type C if it rotates permanently and none
of its symmetry axes is parallel to the vorticity vector. For a type
C clast, both its R and ¢ on the VNS vary with deformation. In
a given general monoclinic flow, what type of behavior an
ellipsoidal clast follows depends on the flow field and the clast
shape. For a type A or type B clast, the symmetry axis that
eventually aligns with the vorticity vector is its intermediate axis
if the flow field is a plane-straining one and its long axis if the
flow field is an S&M flow. Fig. 13 shows the relation between clast
shape and clast rotation type in plane-straining general flows and
S&M flows. In a plane-straining flow field, a clast with ay/
as > Rt is a type A clast because it can stabilize with its inter-
mediate principal axis parallel to the vorticity vector. A clast with
ai/as < Rerie is a type C clast. In an S&M flow field, it is always the
long axis of a clast that will eventually reach parallelism with the
vorticity vector. The clast is type A if its ay/as > Rit, and type B if
its az/as < Rt

Although in monoclinic flows a clast of type A or type B even-
tually has one symmetry axis parallel to the vorticity vector in
principle, it is impossible for most of these clasts in a natural shear
zone to reach the orientations if they are initially randomly
oriented (Figs. 14 and 16). To align the symmetry axes of most of
these clasts with the vorticity vector requires enormously high
strains. For the sectional kinematic vorticity number in the range of
0.7-0.9, for example, the required finite strains would amount to
reducing a 10-km-wide zone to one less than 10 cm wide! These
strains are ridiculously too high for any natural shear zones.

5.2. Origin of uncertainties for each method

The 3D nature of clast rotation at geologically realistic strain
leads to large uncertainties in the vorticity analysis methods. In
plane-straining or S&M flows, ¢ values of clasts, especially elon-
gated ones (mostly type A), tend to decrease to within 10° of the
shear plane quite rapidly as deformation advances. But afterwards
the ¢ values change very slowly with further deformation (Figs. 15
and 16b—d, f—h). Because of this, the Rcytofr can significantly differ
from Rge. In a flow approaching simple shearing, R.itr approaches
infinity while Reyoff is always a small finite number. Therefore the
estimated vorticity number never quite reaches 1. The difference

b
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Fig.13. Flinn diagrams showing the relation of clast rotation type to clast shape in two types of flows. (a) In a general plane-straining flow, clasts are either type A or type C. (b) In an

S&M flow, clasts are either type A or type B.
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Fig. 14. Lower-hemisphere equal-area projections of the a; axes of 300 clasts at different bulk finite strains in the S&M flow with W}, of 0.9. All clasts are initially uniformly oriented
(Fig. 5a-c), and their shapes are shown in Fig. 5d. Very few clasts can reach the orientations where their a; axes are parallel to the vorticity vector at geologically realistic strains. In
(c) the shear zone width is already thinned to 14.3% of its original width; however, only 18.7% clasts align their a; axes to be within 10° to the vorticity vector.

between Reir and Reutoff can be very large, which leads to large the R—¢ plot, and it leads to a large uncertainty in the stabilized

uncertainties in the aspect ratio cutoff (ARC) method. For geologi- clast (SC) method.
cally realistic strain, very few clasts of type A can reach their stable In any S&M flow, it takes relatively small strain for the trends of
orientations (Fig. 16). The linear curve defined by clasts with large a; axes of most clasts, especially elongated clasts, to approach the
R’s may significantly differ from that defined by stabilized clasts on strike of the shear zone boundary and for a3 axes to approach the
aq? T T T T T b ¢ T T T T
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03 i $4/53=1200
§4/54=34.3 E
RNEY < BN ). N
e \"*—h:—_——
=301 4
60~ - =60 o
o = -
f6:5:1 clast /q:b\ $1/83=20
-9 | | 1 1 -9 | | | |
1 2 3 4 5 6 7 1 2 3 4 5 6 7
R R

Fig. 15. R—¢ rotation paths for two clasts both having the same initial orientation (long axis: 12°, 137°, intermediate axis: 13°, 230°, and short axis: 72°,105°) in the plane-straining
flow (a) and the S&M flow (b) both with W;} of 0.9. The initial states of the two clasts are plotted as open circles. Note that for either clast, ¢ decreases quickly to be within 10° of the
shear plane and then changes very slowly. In a S&M flow, only after a; axis reaches parallelism with the vorticity vector, a type B clast starts to show a wide range of ¢ values (the
5:2:1 clast in (b)). The two curves in both (a) and (b) are constructed using Eq. (7) for a vorticity number of 0.3 and 0.9 respectively. At geologically realistic strains, if these two clasts
are treated as stabilized clasts, the estimated vorticity number will be 0.3—0.9, using the SC method.
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Fig. 16. R—¢ Cartesian coordinate plots of 300 clasts in the plane-straining flow with W} of 0.9. All clasts are initially uniformly oriented (Fig. 5a-c), but their shapes in (a—d) are
ay:0y:a3 = 5:2:1, and in (e—h) are ay:a,:a3 = 6:5:1. Note that these clasts start to show low ¢ values at relatively low finite strain (b and f). Both of the two types of clasts are type A,
and in principle their intermediate axes will eventually align with the vorticity vector showing R = 5 for 5:2:1 clasts and R = 6 for 6:5:1 clasts in plots. However, very few clasts align
their intermediate axes with the vorticity vector at bulk finite strain of s;/s3 = 200 when the shear zone width is thinned to 15.9% of its original width (d and h).

shear zone normal (Figs. 14 and 17). After that the plunges of a; axes
increase gradually but the trends hardly change (Fig. 14). Therefore,
on the VNS, clasts with large R’s tend to show ¢’s around zero, but
they are far from stabilized. With SC method, the uncertainty in
estimated vorticity number by treating these clasts as stabilized

e

clasts can be as large as 0.6 (Fig. 15). When the a; axes of type B
clasts of ay/as = Ry (R can be any value between 1 and Rcit) reach
parallelism with the vorticity vector, the a; axes start to rotate
permanently within the VNS, and the R—¢ plot starts to show
a wide range of ¢ values at R = R (Fig. 15b). At geologically realistic
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Fig. 17. Lower-hemisphere equal-area projections of the a; axes of 300 clasts at different finite strains in the S&M flow with W} of 0.9. Clast initial orientations and shapes are the
same as in Fig. 14. Note that a; axes quickly approach the normal to the shear zone boundary (a).

strains, few a; axes of clasts can reach parallelism with the vorticity
vector (Fig. 14c), and type B clasts display ¢ values around zero
defining a Reytoif much smaller than Reie (Fig. 9). Therefore large
uncertainties exist in the ARC method (Figs. 6—10).

In plane-straining flows, clasts are either type A or type C.
Similarly, at geologically realistic strains, very few a, axes of type A
clasts can reach parallelism with the vorticity vector (Fig. 16), and
a large uncertainty is introduced when treating them as stabilized
clasts in the SC method. For the ARC method, Rcyoff Cannot repre-
sent Rt properly, which leads to a large uncertainty. In order for
Reutoff to represent Rei; properly, type C clasts are required to show
a wide range of ¢ values at R close to R¢jt. However, all type C clasts
have aq/as ratio (r) less than R, and only a few clasts in a pop-
ulation of clasts have r close to Rit. Besides, R varies between 1 and
r during deformation for a type C clast, and the chance is rare for
a type C clast to show R equal or close to its r. Therefore, in plane-
straining flows, type C clasts cannot show a wide range of ¢ values
at R close to Rerit, and Reytoff is generally less than Rcir. The ARC
method can underestimate the vorticity number.

For the backward rotating clast (BRC) method, additional
uncertainties can be introduced due to the difficulty in identifying
forward/backward rotating clasts in practice. Fig. 18 is an example
showing the R—¢ polar plot of the rotation path of a triaxial clast

(5.82:5.33:1) in the S&M flow with W} of 0.7. This clast rotates
forward first for 30° along vorticity axis before it rotates backward.
In the R—¢ plot, the transition (point T in Fig. 18) between forward
rotation and backward rotation is not on the hyperbola. The fact
that a clast can reverse its rotation sense during deformation
introduces a serious problem for identifying the rotation sense
from their tails because an instantaneously backward rotating clast
may have forward rotated and may still retain tails suggesting
forward rotating. This kind of uncertainty can be large. Although it
is possible in numerical modeling to determine if a specific clast is
momentarily forward or backward rotating, it is generally impos-
sible to do so for natural rigid clasts. Because of this kind of
uncertainty, we do not compare our numerical modeling results
with those from practical vorticity analysis using the BRC method.

As discussed above, the uncertainties in the estimated vorticity
number using the vorticity analysis methods are consequences of
3D rotation behavior of clasts. Therefore, the uncertainties are truly
intrinsic, and cannot be removed.

6. Conclusions

Rigid clast motion relevant for natural rock deformation is an
intrinsically 3D problem. Current vorticity analysis methods are
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Fig.18. R—¢ plot of a single clast (a;:a;:a3 = 5.82:5.33:1) rotation path in the S&M flow
with W of 0.7. The hyperbola is constructed using Egs. (7) and (8) for the W} of 0.7.
The initial orientation of the clast is a;:10°, 143°, a,: 45°, 052.5°, and a3:44°, 160°. The
clast rotates forward (dash line) first, and then rotates backward (solid line).

mainly based on the 2D theory of Ghosh and Ramberg (1976) which
is inappropriate for clasts in natural rocks.

Even in flow fields that are homogeneous, steady state, and with
monoclinic symmetries and assuming that clast rotation perfectly
follows Jeffery’s theory, the vorticity analysis methods using rigid
clasts have intrinsic uncertainties so large that the results cannot be
used to constrain the kinematics of natural shear zones. The large
uncertainties associated with vorticity analysis using rigid clasts
arise from 3D nature of rigid clast rotation.

Given the large intrinsic uncertainties in vorticity analysis using
rigid clasts, the vorticity numbers between 0.5 and 0.85 reported in
the literature using these methods could all have been produced in
zones with close-to-simple-shearing flows.
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